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Abstract

We give the multiplication structures of all real simple n-Lie algebras and prove
that each of them has metric dimension 1 or 2 depending on that it belongs to
type I or type II. We also determine the signatures of metrics on all real simple
n-Lie algebras. Moreover, we present an example of real 3-Lie algebras which
is indecomposable but has much larger metric dimension.

PACS numbers: 02.20.Sv, 02.10.Xm
Mathematics Subject Classification: 17B20, 17B81

1. Introduction

Recently, it has been shown that the structure of metric the 3-Lie algebras is closely linked
to the supersymmetry and gauge symmetry transformations of the worldvolume theory of
multiple coincident M2-branes (see [1-3]). The Bagger—Lambert theory has a novel local
gauge symmetry which is not based on a Lie algebra, but rather on a 3-Lie algebra. It was
found that the Jacobi identity for a 3-Lie algebra is essential to define the action with N = 8
supersymmetry, and the Jacobi identity can also be thought of as a generalized Plucker relation
in the physics literature. To obtain the correct equations of motion for the Bagger—Lambert
theory from a Lagrangian that is invariant under all aforementioned symmetries seems to
require the 3-Lie algebra to admit an invariant inner product (i.e. a metric). The signature of
this metric determines the relative signs of the kinetic terms for scalar and fermion fields in the
Bagger—Lambert Lagrangian (see [1-3]). In ordinary gauge theory, a positive-definite metric
is required in order to ensure that the theory has positive-definite kinetic terms and to prevent
violations of unitarity due to propagating ghost-like degrees of freedom. However, there are
very few 3-Lie algebras which admit positive-definite metrics. In fact, it has been shown (see
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[4, 5]) that all finite-dimensional 3-Lie algebras with positive-definite metrics are the direct
sums of Ag (see section 3) with trivial algebras. On the other hand, in order to find new
interacting Bagger-Lambert Lagrangians and despite the possibility of negative-norm states,
one is led to contemplate 3-Lie algebras with metrics having any signatures (p, g), such as
p = 1 (Lorentzian), p = 2 or with a degenerate invariant symmetric bilinear forms, since in
certain dynamical systems a zero-norm generator corresponds to a gauge symmetry while a
negative-norm generator corresponds to a ghost (see [6—10]). Thus, it seems to be worthwhile
and interesting, in both physical and mathematical observations, to investigate n-Lie algebras
(any n > 3) with invariant symmetric (nondegenerate or not) bilinear forms.

This paper is organized as follows. In section 2, we recall some notations and facts on
n-Lie algebras. In particular, we summarize the classification of real simple n-Lie algebras.
In section 3 we give the concrete bracket structures of all real simple n-Lie algebras of type
I and the real simple 3-Lie algebra of type II, and prove that the metric dimension of a real
simple n-Lie algebra is equal to 1 or 2 depending on that it is of type I or II. In section 4
we construct an example of real 3-Lie algebras which is indecomposable but has much larger
metric dimension.

Throughout this paper, K will denote the number field R or C and all n-Lie algebras will
be finite dimensional over K.

2. Some results on n-Lie algebras

We recall in this section some notations and results on n-Lie algebras which can be found in
[11] and [12].

Let A be a vector space over K. An n-Lie algebra structure on A consists of a linear map
[,...,]: A”"A — A such that the generalized Jacobi identity

n
[xls'~~’xn—l9[yls'~~’yn]] = Z [ylvn-,[-xla'Hv-xn—lsyi]’”"yn]
i=1

holds, for all x;, y; € A.

A subspace I of an n-Lie algebra A is called anideal of Aif [I, A, ..., A] C I. Clearly, the
center Z(A) = {x € A | [x, A, ..., A] = 0} is an ideal of A. Call A solvable if A® = 0 for
some k, where AV =[A, ..., A],and AV =[AD . . AD] Call A nilpotent if A* = 0 for
some k, where A! = [A, ..., A], and A" =[A’, A, ..., A]. The unique maximal solvable
ideal of A is called the radical of A and denoted by RadA. IfRadA = 0, A is called semisimple.
If A has no ideals except itself and 0, and if moreover Al = [A, ..., A] # 0, A is called
simple. A is called Abelian, if Al =[A,...,A] =0, Ais called perfect if Al = A.

Proposition 2.1 ([12]). There is, up to isomorphism, a unique simple n-Lie algebra over C,
for every n > 2. This algebra is of dimension (n + 1) and its bracket is given relative to a
basis {ey, ..., et} by

ler, ..., &\ ...y epm] = (=D MHe,, i=1,2,...,n+1, (2.1

where the symbol é; means that e; is omitted.

Remark 2.1. In the following, we denote by Ag the unique complex simple n-Lie algebra
given by (2.1).

Remark 2.2. In the following, any brackets not listed in a multiplication table of an n-Lie
algebra are assumed to be equal to zero.
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Proposition 2.2 ([11, 12]). An n-Lie algebra A over C or R is semisimple if and only if A is
a direct sum of simple ideals.

In order to classify the finite-dimensional real simple n-Lie algebras, we will recall the
definitions of complexification of a real n-Lie algebra, and of the realification of a complex
n-Lie algebra.

Let A be an arbitrary real n-Lie algebra. We set up the tensor product A := A ® C and
regard it as a vector space over C by z;(x ® z2) := x ® 7122, for x € A, and z;, z» € C.
Obviously, A€ is an n-Lie algebra with bracket

[xl®zla-~-7xn ®Zn] = [xlan-’xn]@Zl"'Zn-

This complex n-Lie algebra is called the complexification of A. Clearly, dimg A = dim¢ AC.
Conversely, given a complex n-Lie algebra A, then by restricting the ground field C to R,
we obtain a real n-Lie algebra, which will be called the realification of A and denoted by Ag.
Clearly, if {e|, ..., e,) is a basis of A, then {e|, ..., e, ~/—lei, ..., ~/—le,} is a basis of
Ag, so dimgAg = 2dimc A.
A real n-Lie algebra A is called a real form of a complex n-Lie algebra A if A is
isomorphic to A.

Proposition 2.3 ([11]). Let A be an arbitrary complex simple n-Lie algebra. Then the
realification A of Ar is simple.

Proposition 2.4 ([11]). A real simple n-Lie algebra is either isomorphic to the realification
of a complex simple n-Lie algebra, or isomorphic to a real form of a complex simple n-Lie
algebra.

According to proposition 2.4, in order to find all real simple n-Lie algebras (n > 3), it
suffices to calculate the real forms and the realifications of all complex simple n-Lie algebras.
However, as proposition 2.1 shows, there is up to isomorphism only one finite-dimensional
complex simple n-Lie algebra Ay of dimension (n+1) given by remark 2.1. Therefore, by
proposition 2.3, as one simple real n-Lie algebra we have the realification of Aj and it is of
dimension 2(n+1) over R. On the other hand, it has been shown that (see [11, 12]) A( has
up to isomorphism [%] + 1 real forms and every real form is determined by a bracket table
given by (3.2) below. In summary, we have arrived at the following classification theorem of

real simple n-Lie algebras.

Theorem 2.5. All real simple n-Lie algebras are divided into two types:

type I: [%] + 1 n-Lie algebras of dimension n + 1,
type II: one n-Lie algebra of dimension 2(n + 1).

3. Real simple n-Lie algebras

Let A be an arbitrary n-Lie algebra over K. A bilinear form b on A is said to be invariant
if b([xy, ..., xp—1,x],y) = —b(x, [x1,...,x,—1, y]) for all x;, x,y € A. A nondegenerate
symmetric invariant bilinear form b on A is called a metric (or an inner product) and (A, b) is
said to be a metric n-Lie algebra.

Let us denote by F'(A) the vector space of all symmetric invariant bilinear forms on A and
let B(A) be the subspace of F(A) spanned by all metrics. We will call dimB(A) the metric
dimension of A and we will say that A admits a unique (up to a constant) metric structure if
dimB(A) = 1.
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Lemma 3.1 (cf [13]). If A is an n-Lie algebra over K admitting a metric, then B(A) = F(A).

Proof. Let b a metric on A and ¢ € F(A). Denote by M (b) and M () the matrices
associated with b and ¢ relative to a basis of A, respectively. Observe that the determinant
det(M(¢) — AM(b)) is a polynomial in .. We may find Xy € K,Ay # 0, such that
det(M (¢) —AM (b)) # 0. This shows that ¢ — Agb is nondegenerate and ¢ = (¢ —Agb) +Xrob €
B(A). a

Lemma 3.2. Let A be an n-Lie algebra over K and let A = I} @ - - - @ I, where each I is
an ideal of A.
(i) dimF(A) > > -, dimF (I;).
(ii) If, in addition, there are at least (im — 1) ideals among 1y, ..., I, which are perfect, then
dimF (A) = Y ), dimF (Iy).

Proof. One may consider F(I;) as a subspace of F(A) by extending any by € F(I;) by zero
in a natural way. Hence, F(A) 2 @Z’zl F (1) which proves (i). In order to prove (ii), we
assume that /; is perfect. Then for any ¢ € F(A) and I’ # [, we have

oy, I) =Ly, ..., I, I) = o, [, ..., I, Ir]) = 0.

Moreover, since ¢ |1, x5, € F(Ix) forany k, 1 < k < m, it follows that ¢ = Z}f:l © |1.x1,-and
hence F(A) = @?:1 F (I}.), which completes the proof. O

Lemma 3.3. Let A be an n-Lie algebra over R, then
dimg F(A) < dimc F(A©).

Proof. Suppose that {¢; | 1 < i < I} are linearly independent elements in F(A). Extend
each form ¢; to A® by

@i (x1 ® z1, X2 @ 22) = 21220 (X1, X2), X €A, zi € C.

It is easy to see that each ¢; € F(A®%). We now prove that {¢; | 1 < i < [}
are linearly independent over C. Assume that there exist ; € C,1 < i < [, such
that 25:1 Aigi(x1 @ z1,x ® z2) = 0 for any x;, € A and z; € C. In particular,
Zf’:l Aigi(x1®1, xR1) = Zgzl Aii(x1, x2) = 0. Suppose that A; = a,-+\/—_1b,~, a;,b; e R,
then Zé:l a,-<pi(x1,x2) = Zé:l bigz)i(xl,xz) = 0. Hence, a; = b,‘ = 0, i.e. )‘-i = 0, which

implies that dimg F(A) < dim¢ F(A©). O

We now investigate the metric structures of all real simple n-Lie algebras (n > 3).

First we consider the real simple n-Lie algebras of type L. Let {ey, ..., e,+1} be a basis
of the vector space R™! and by, 0 < s < [%] be a nondegenerate symmetric bilinear
form on R™*! whose associated matrix relative to this basis is diag(—1,...,—1,1,...,1)
with s negatives, and f be a nonzero determinant form satisfying f(ey, ..., e,+1) = 1. For
Vi, ..., v, € R let [y, ..., v,], be the unique element in R"*! such that for all x € R"*!

the identity

bS([Ul""vvn]S9x):f(vls"'vvn?x) (3'1)
holds. Then with the bracket [vy, ..., v,]s, R"™! becomes an n-Lie algebra, which will be
denoted by AS,,. According to [11], A%, = AS , ifand only if s = s',0 < s < [%'], and

{qu+1 |O <38 < [%]} exhaust all real simple n-Lie algebras of type I.
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Let[e, ..., & , Cnslls = Zk 1 A€k, Ay € R, then
. —aj, Jj<s,
bs([els'°"€i7"‘7en+l]3‘9ej): { ! .
aj, J > S.
Note that
A O’ i#j’
f(el""vei9""en+l’ej):{(_l)n+]j’ l=].
Then by (3.1), we have
(_l)n_ieiv iés,

[ela"'véiv"'ven+l].Y={ (3.2)

(=D, i > 5.

Identity (3.2) is the bracket table of real simple n-Lie algebra A},

Theorem 3.4. Let A’ .., b, as above. Then

n+l1>
(i) ¢ € F( n+l) if and only if ¢ = ab; for some @ € R,
(ii) dlmF(A’ ) = dlmB(AjH ) = 1.

n+l

Proof. Since f is a determinant form, it follows that every symmetric bilinear form by is

invariant. Indeed, according to (3.1), we have for any v, ..., v,, x € R+
by([vi, ..., 0], x) = f(vr, ..., 0, X) = —f(V1,..., V1, X, V)
= —bs([v1, ..., Vy_1, X], Uy) = —bs(Vp, [V1, ..., Vp—1, X]).
Thus, ab, € F(AS,,) for any a € R. Conversely, suppose ¢ € F(A3,,). Using (3.2)
one has the following:
if i# ], plei,ej) =Fp(ler, ..., é,...,eu1ls, €))
=xop(enr, ler, ..., e, ..., e]) =0,
if i<s,  gle,e)=D""gler .. b el )
= (D" glenisler, o 6y ens el
= —@(en+1, le1, .- -, enls) = —@(ens1, €ns1)s
if i>s, pleie) = =D""p(ler, ..., &, ennlss @)

= (_l)n l(p(en+1» [el’ e éi» cees €, ei]s)
= (P(€n+1, ler, ..., en]s) = <P(€n+1, en+l)-

Thus, we have

0, L #
pej,ej) =1 —@(ens1,€nr1), I =j<s
@(ens1, €ns1), i=j>s.
Since
0, i#/,
bs(ej,ej) =1—1, i=j<s
1, i=j>s.

It follows that ¢ = ab, for some o € R, which proves assertion (i). Assertion (ii) follows at
once from lemma 3.1 and assertion (i). O

Remark 3.1. Here our 3-Lie algebra Ag is denoted by A4 in some articles (e.g. [6]).
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Next we study the real simple n-Lie algebras of type II. For simplicity, we only consider
the case n = 3.
Let A be the unique complex simple 3-Lie algebra with bracket table

le, ..., 6 ... ea] = (=1)ie;, i=1,2,3,4. (3.3)

Then the realification, denoted by Ag, of A is a real simple 3-Lie algebra of dimension 8, and
{ei, eqri == ~/—1e; | 1 < i < 4}is abasis of Ag. From (3.3), we can write out the bracket
table of Ag as follows:

ler, ..., &, ...,eal = (=Die;,

[€dsts - s aris .-y eaa] = (=DM eyy, 1 <i <4,

lei, ej, eari] = v —1ler, e, ex], 1<i<y, k<4, G4
lei, ess), earr] = —lei, e, ex], 1<i,j<k<4

Note that Ag is the unique real simple 3-Lie algebra of type II. Using identity (3.4), one
can easily verify that if ¢ is an invariant symmetric bilinear form on Ag then ¢ satisfies
that

plei,e;) =0,1<1i, J <8,
except for
pler,e1) = =g@(eq, e4) = —@p(es, e5) = - -+ = —¢(es, €3)
and
pler, es) = @(ez, e6) = @(e3, e7) = p(es, e3).
Define two bilinear forms ¢; and ¢, on Ag given by
pi(eie;) =0,1<i#j<3, pi1(ei, €) = —p(eari, eari) = 1, 1<i<4,
(e e;) =0,1<1,7 <8, except for @ (e;, eayi) = 1, 1 <i<4.

Clearly, ¢; and ¢, are linearly independent metrics on Ag.

Theorem 3.5.

(i) dimF (Ag) = dimB(Ag) = 2.
(ii) Any metric on Ag has the signature (4, 4).

Proof.

(i) By proposition 2.4, AC the complexification of Ag, is semisimple, so AS = Ag ® Ay,
where Ay is the unique complex simple 3-Lie algebra of dimension 4. Using lemmas 3.2
and 3.3, one has dimg F(Ag) < dimg¢ F(A(SC) = 2dim¢ F (Ag). Since Ay is simple, similar
argument shows that dim¢ F (Ap) = dimc B(Ap) = 1. On the other hand, since ¢; and ¢,
are linearly independent, dimg ' (Ag) > 2. Therefore, dimF (Ag) = dimB(Ag) = 2, by
lemma 3.1.

(ii) Let ¢ = ki@ + ko, be an arbitrary metric on Ag, where ¢; are given as above and
ki € R,i = 1,2. According to the knowledge of symmetric forms in linear algebra, we

can prove by a direct calculation that the associated matrix of ¢ relative to {ey, ..., e} is
congruent to diag(1, 1, 1,1, —1, —1, —1, —1). In other words, relative to another basis
of Ag, the associated matrix of ¢ is diag(1, 1, 1,1, —1, —1, —1, —1). O
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Remark 3.2. Theorem 3.5 is true for any n > 3.

To conclude this section, we observe the metric structure on a real reductive n-Lie algebra.
Assume that A is a real reductive n-Lie algebra, i.e. A = S @ Z(A), where S is a semisimple
ideal and Z(A) is the center of A. Suppose that S is a direct sum of /; simple ideals of type I
and /, simple ideals of type II, and dimZ(A) = r.

Theorem 3.6. Let A be a real reductive n-Lie algebra as above. Then A admits a metric and
dimB(A) = [y +2[, + "2,

Proof. @ We first find a metric on A. Let Z(A) = (e, ...,e.). Define a bilinear form
@ on Z(A) given by ¢(e;,e;) = 8;;,1 < i,j < r. ¢ is clearly a metric on Z(A). Note
that S is a direct sum of /; + [, simple ideals and each of them admits a metric, say ¢;.
Then we may construct a metric on A from ¢, ..., ¢,4, and ¢ in a natural way. Hence,
F(A) = B(A) by lemma 3.1. By lemma 3.2, one has dimF (A) = dimF (S) + dimF (Z(A)).
Moreover by theorems 3.4 and 3.5, dimF'(S) = dimB(S) = [; + 2/,. On the other hand,

dimF(Z(A)) = ’(’—2“) since the ’(’—2”) symmetric bilinear forms ¢;; on Z(A) defined to be
zero except for ¢;;(e;,e;) = 1,1 < i, j < r, are invariant and form a basis of F(Z(A)).
Therefore, diimF(A) = dimB(A) = [} + 2l + "1 O

4. An example of 3-Lie algebras

We have proved that any real simple n-Lie algebra has metric dimension 1 or 2. Now we
present an example of real 3-Lie algebras which is indecomposable but has much larger metric
dimension. This example is inspired by a result in [13].

We begin with recalling some facts on 3-Lie algebras. Let A be an arbitrary 3-Lie algebra
over C or R. If dimA < 3, then A is Abelian. If dimA = 3, then either A is Abelian,
or A has a basis {ej, e, e3} such that [e, €5, e3] = e; which shows that A is not nilpotent.
Moreover, according to the multiplication table of n-Lie algebras of dimension n + 1 (see [12]),
there is a unique nilpotent and non-Abelian 3-Lie algebra of dimension 4 whose bracket is
given, relative to a basis {ey, ..., es4}, by [e2, €3, e4] = e, which shows that A is nilpotent and
non-Abelian. Summarizing above argument we obtain the following:

Lemma 4.1 (cf [12]). Let A be a nilpotent 3-Lie algebra over C or R. If dimA < 3, A is
Abelian. If dimA = 4, A is non-Abelian and the center Z(A) is of dimension 1.

From now on, let A denote a real simple 3-Lie algebra of type I, i.e. A = A}, s =0, 1, 2.
Consider the vector space N(A, 2) := AT\ ® AT, where AT;, i = 1,2, isacopyof A. Define
the bracket on N (A, 2) by

[x,y, 21 Tisju—1, i+j+k—1<2,

[xT;, yT;, zTi] = .
Y4 g 0, otherwise.

Clearly, N(A,?2) is a real 3-Lie algebra of dimension 8.

Lemma 4.2. Let N = N(A, 2) be as above.

(i) N is nilpotent. More precisely, N' = Z(N) = AT,, N> = 0.
(ii) N admits a metric.

Proof.  Assertion (i) is obvious. In order to prove (ii), we assume that b is a metric on
A, and define a bilinear form on N by b(xT;, yT;) = b(x, y)8;”,x,y € A, where & is the
Kronecker symbol. Clearly, b is symmetric since b is so. To prove that b is nondegenerate,

7
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we take a nonzero vector X = x;7} + x,T, € N. Without loss of generality we may
assume that x; # 0. Since b is nondegenerate, there exists y € A such that b(x;, y) # O.
Hence, b(X, yT5) = b(xi,y) # 0. Now we prove that b is invariant. Let x,y,u,v €
A, then b([xT;, yT;, uTil. vT)) = b(x,y, lTisjes—1.vTy) = b(lx, y, ul, )85 ™™ =
—b(u, [x, y, v1857 MY = —b Ty, [xT;, yT;, vI), i, j, k, I = 1,2, which completes the
proof. ]

Theorem 4.3. N = N(A, 2) as above.

(i) N is indecomposable.
(ii) dimB(N) > 5.

Proof.

(i) Suppose that N = I & J, where [ and J are non-zero ideals of N. If one of them, say 7,
has dimension greater than 4, then dimJ < 3.
Lemma 4.2 shows that J is nilpotent, so J must be Abelian by lemma 4.1. Thus, one
has that [J, N, N] C [J, J, J] = 0, which shows that J C Z(N), the center of N. Thus,
by lemma 4.2, one has that

JCZ(N)=N'=[N,N,N1=[I,1,I]1C I,

which is impossible since I N J = {0}. On the other hand, if dim/ = dimJ = 4, then
again by lemma 4.1, I and J are all non-Abelian and dimZ(/) = dimZ(J) = 1. But by
lemma 4.2, dimZ(N) = 4, which leads to a contradiction for Z(N) = N(I) & N(J).
This shows that N must be indecomposable.

(i) In order to prove that dimB(N) > 5, it suffices to prove that dimF (N) > 5 according to
lemmas 4.2 and 3.1. Let {e;, ..., es} be a basis of A, then {x; = ¢; T}, x40 = €;T> | 1 <
i < 4} is abasis of N such that {xs, ..., xg} provides a basis of Z(N). Let b be the metric
on N given by lemma 4.2. For each j = 1, 2, 3, 4 define a bilinear form ¢; on N by

8 8
®j <Zai-xi Zbixi> :ajbj, a;, b, e R.
i=1 i=1

It is easy to prove that ¢; is invariant and symmetric. We now prove that the bilinear
forms b and ¢;, j = 1, 2, 3, 4, are linearly independent. Take k; € R, j =0, 1, 2, 3, 4,
such that kob + ijl kjp; = 0. Since b is nondegenerate on A, there are u, v € A, such
that b(u, v) # 0. Thus,

4
kob+ Y ki | Ty, vTy) = kob(uTi, vT2) = kob(u, v),
j=1

which forces that kg = 0. Similarly, fori = 1, 2, 3, 4,

4

kob + ij(Pj (xi, xi) = kigi (x;, x;)) = k; = 0.
=1

Hence, b and ¢;, 1 < j < 4, are linearly independent and dimF (N) > 5. 0
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