Real simple n-Lie algebras admitting metric structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42485206
(http://iopscience.iop.org/1751-8121/42/48/485206)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.156
The article was downloaded on 03/06/2010 at 08:25

Please note that terms and conditions apply.

Real simple n-Lie algebras admitting metric structures

Yidong Jin ${ }^{1}$, Wenli Liu ${ }^{2,3}$ and Zhixue Zhang ${ }^{2}$
${ }^{1}$ School of Mathematics and Physics, North China Electric Power University, Baoding, Hebei 071003, People's Republic of China
${ }^{2}$ School of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
E-mail: liuwl_hb@yahoo.com.cn

Received 3 May 2009, in final form 16 October 2009
Published 13 November 2009
Online at stacks.iop.org/JPhysA/42/485206

Abstract

We give the multiplication structures of all real simple n-Lie algebras and prove that each of them has metric dimension 1 or 2 depending on that it belongs to type I or type II. We also determine the signatures of metrics on all real simple n-Lie algebras. Moreover, we present an example of real 3-Lie algebras which is indecomposable but has much larger metric dimension.

PACS numbers: 02.20.Sv, 02.10.Xm
Mathematics Subject Classification: 17B20, 17B81

1. Introduction

Recently, it has been shown that the structure of metric the 3-Lie algebras is closely linked to the supersymmetry and gauge symmetry transformations of the worldvolume theory of multiple coincident M2-branes (see [1-3]). The Bagger-Lambert theory has a novel local gauge symmetry which is not based on a Lie algebra, but rather on a 3-Lie algebra. It was found that the Jacobi identity for a 3-Lie algebra is essential to define the action with $N=8$ supersymmetry, and the Jacobi identity can also be thought of as a generalized Plucker relation in the physics literature. To obtain the correct equations of motion for the Bagger-Lambert theory from a Lagrangian that is invariant under all aforementioned symmetries seems to require the 3-Lie algebra to admit an invariant inner product (i.e. a metric). The signature of this metric determines the relative signs of the kinetic terms for scalar and fermion fields in the Bagger-Lambert Lagrangian (see [1-3]). In ordinary gauge theory, a positive-definite metric is required in order to ensure that the theory has positive-definite kinetic terms and to prevent violations of unitarity due to propagating ghost-like degrees of freedom. However, there are very few 3-Lie algebras which admit positive-definite metrics. In fact, it has been shown (see

[^0][4,5]) that all finite-dimensional 3-Lie algebras with positive-definite metrics are the direct sums of A_{4}^{0} (see section 3) with trivial algebras. On the other hand, in order to find new interacting Bagger-Lambert Lagrangians and despite the possibility of negative-norm states, one is led to contemplate 3-Lie algebras with metrics having any signatures (p, q), such as $p=1$ (Lorentzian), $p=2$ or with a degenerate invariant symmetric bilinear forms, since in certain dynamical systems a zero-norm generator corresponds to a gauge symmetry while a negative-norm generator corresponds to a ghost (see [6-10]). Thus, it seems to be worthwhile and interesting, in both physical and mathematical observations, to investigate n-Lie algebras (any $n \geqslant 3$) with invariant symmetric (nondegenerate or not) bilinear forms.

This paper is organized as follows. In section 2, we recall some notations and facts on n-Lie algebras. In particular, we summarize the classification of real simple n-Lie algebras. In section 3 we give the concrete bracket structures of all real simple n-Lie algebras of type I and the real simple 3-Lie algebra of type II, and prove that the metric dimension of a real simple n-Lie algebra is equal to 1 or 2 depending on that it is of type I or II. In section 4 we construct an example of real 3-Lie algebras which is indecomposable but has much larger metric dimension.

Throughout this paper, K will denote the number field \mathbb{R} or \mathbb{C} and all n-Lie algebras will be finite dimensional over K.

2. Some results on \boldsymbol{n}-Lie algebras

We recall in this section some notations and results on n-Lie algebras which can be found in [11] and [12].

Let A be a vector space over K. An n-Lie algebra structure on A consists of a linear map $[, \ldots]:, \wedge^{n} A \rightarrow A$ such that the generalized Jacobi identity

$$
\left[x_{1}, \ldots, x_{n-1},\left[y_{1}, \ldots, y_{n}\right]\right]=\sum_{i=1}^{n}\left[y_{1}, \ldots,\left[x_{1}, \ldots, x_{n-1}, y_{i}\right], \ldots, y_{n}\right]
$$

holds, for all $x_{k}, y_{k} \in A$.
A subspace I of an n-Lie algebra A is called an ideal of A if $[I, A, \ldots, A] \subseteq I$. Clearly, the center $Z(A)=\{x \in A \mid[x, A, \ldots, A]=0\}$ is an ideal of A. Call A solvable if $A^{(k)}=0$ for some k, where $A^{(1)}=[A, \ldots, A]$, and $A^{(l+1)}=\left[A^{(l)}, \ldots, A^{(l)}\right]$. Call A nilpotent if $A^{k}=0$ for some k, where $A^{1}=[A, \ldots, A]$, and $A^{l+1}=\left[A^{l}, A, \ldots, A\right]$. The unique maximal solvable ideal of A is called the radical of A and denoted by $\operatorname{Rad} A$. If $\operatorname{Rad} A=0, A$ is called semisimple. If A has no ideals except itself and 0 , and if moreover $A^{1}=[A, \ldots, A] \neq 0, A$ is called simple. A is called Abelian, if $A^{1}=[A, \ldots, A]=0, A$ is called perfect if $A^{1}=A$.

Proposition 2.1 ([12]). There is, up to isomorphism, a unique simple n-Lie algebra over \mathbb{C}, for every $n>2$. This algebra is of dimension $(n+1)$ and its bracket is given relative to a basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$ by

$$
\begin{equation*}
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{n+1+i} e_{i}, \quad i=1,2, \ldots, n+1 \tag{2.1}
\end{equation*}
$$

where the symbol \hat{e}_{i} means that e_{i} is omitted.
Remark 2.1. In the following, we denote by A_{0} the unique complex simple n-Lie algebra given by (2.1).

Remark 2.2. In the following, any brackets not listed in a multiplication table of an n-Lie algebra are assumed to be equal to zero.

Proposition 2.2 ([11, 12]). An n-Lie algebra \tilde{A} over \mathbb{C} or \mathbb{R} is semisimple if and only if \tilde{A} is a direct sum of simple ideals.

In order to classify the finite-dimensional real simple n-Lie algebras, we will recall the definitions of complexification of a real n-Lie algebra, and of the realification of a complex n-Lie algebra.

Let \tilde{A} be an arbitrary real n-Lie algebra. We set up the tensor product $\tilde{A}^{\mathbb{C}}:=\tilde{A} \otimes \mathbb{C}$ and regard it as a vector space over \mathbb{C} by $z_{1}\left(x \otimes z_{2}\right):=x \otimes z_{1} z_{2}$, for $x \in \tilde{A}$, and $z_{1}, z_{2} \in \mathbb{C}$. Obviously, $\tilde{A}^{\mathbb{C}}$ is an n-Lie algebra with bracket

$$
\left[x_{1} \otimes z_{1}, \ldots, x_{n} \otimes z_{n}\right]:=\left[x_{1}, \ldots, x_{n}\right] \otimes z_{1} \cdots z_{n}
$$

This complex n-Lie algebra is called the complexification of \tilde{A}. Clearly, $\operatorname{dim}_{\mathbb{R}} \tilde{A}=\operatorname{dim}_{\mathbb{C}} \tilde{A}^{\mathbb{C}}$.
Conversely, given a complex n-Lie algebra \tilde{A}, then by restricting the ground field \mathbb{C} to \mathbb{R}, we obtain a real n-Lie algebra, which will be called the realification of \tilde{A} and denoted by $\tilde{A}_{\mathbb{R}}$. Clearly, if $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis of \tilde{A}, then $\left\{e_{1}, \ldots, e_{m}, \sqrt{-1} e_{1}, \ldots, \sqrt{-1} e_{m}\right\}$ is a basis of $\tilde{A}_{\mathbb{R}}$, so $\operatorname{dim}_{\mathbb{R}} \tilde{A}_{\mathbb{R}}=2 \operatorname{dim}_{\mathbb{C}} \tilde{A}$.

A real n-Lie algebra \tilde{A} is called a real form of a complex n-Lie algebra \tilde{A} if $\tilde{A}^{\mathbb{C}}$ is isomorphic to \tilde{A}.

Proposition 2.3 ([11]). Let \tilde{A} be an arbitrary complex simple n-Lie algebra. Then the realification \tilde{A} of $\tilde{A}_{\mathbb{R}}$ is simple.

Proposition 2.4 ([11]). A real simple n-Lie algebra is either isomorphic to the realification of a complex simple n-Lie algebra, or isomorphic to a real form of a complex simple n-Lie algebra.

According to proposition 2.4, in order to find all real simple n-Lie algebras ($n \geqslant 3$), it suffices to calculate the real forms and the realifications of all complex simple n-Lie algebras. However, as proposition 2.1 shows, there is up to isomorphism only one finite-dimensional complex simple n-Lie algebra A_{0} of dimension ($n+1$) given by remark 2.1. Therefore, by proposition 2.3, as one simple real n-Lie algebra we have the realification of A_{0} and it is of dimension $2(n+1)$ over \mathbb{R}. On the other hand, it has been shown that (see [11, 12]) A_{0} has up to isomorphism $\left[\frac{n+1}{2}\right]+1$ real forms and every real form is determined by a bracket table given by (3.2) below. In summary, we have arrived at the following classification theorem of real simple n-Lie algebras.

Theorem 2.5. All real simple n-Lie algebras are divided into two types:
type I: $\left[\frac{n+1}{2}\right]+1 n$-Lie algebras of dimension $n+1$,
type II: one n-Lie algebra of dimension $2(n+1)$.

3. Real simple \boldsymbol{n}-Lie algebras

Let A be an arbitrary n-Lie algebra over K. A bilinear form b on A is said to be invariant if $b\left(\left[x_{1}, \ldots, x_{n-1}, x\right], y\right)=-b\left(x,\left[x_{1}, \ldots, x_{n-1}, y\right]\right)$ for all $x_{i}, x, y \in A$. A nondegenerate symmetric invariant bilinear form b on A is called a metric (or an inner product) and (A, b) is said to be a metric n-Lie algebra.

Let us denote by $F(A)$ the vector space of all symmetric invariant bilinear forms on A and let $B(A)$ be the subspace of $F(A)$ spanned by all metrics. We will call $\operatorname{dim} B(A)$ the metric dimension of A and we will say that A admits a unique (up to a constant) metric structure if $\operatorname{dim} B(A)=1$.

Lemma 3.1 (cf [13]). If A is an n-Lie algebra over K admitting a metric, then $B(A)=F(A)$.
Proof. Let b a metric on A and $\varphi \in F(A)$. Denote by $M(b)$ and $M(\varphi)$ the matrices associated with b and φ relative to a basis of A, respectively. Observe that the determinant $\operatorname{det}(M(\varphi)-\lambda M(b))$ is a polynomial in λ. We may find $\lambda_{0} \in K, \lambda_{0} \neq 0$, such that $\operatorname{det}(M(\varphi)-\lambda M(b)) \neq 0$. This shows that $\varphi-\lambda_{0} b$ is nondegenerate and $\varphi=\left(\varphi-\lambda_{0} b\right)+\lambda_{0} b \in$ $B(A)$.

Lemma 3.2. Let A be an n-Lie algebra over K and let $A=I_{1} \oplus \cdots \oplus I_{m}$, where each I_{k} is an ideal of A.
(i) $\operatorname{dim} F(A) \geqslant \sum_{k=1}^{m} \operatorname{dim} F\left(I_{k}\right)$.
(ii) If, in addition, there are at least $(m-1)$ ideals among I_{1}, \ldots, I_{m} which are perfect, then $\operatorname{dim} F(A)=\sum_{k=1}^{m} \operatorname{dim} F\left(I_{k}\right)$.

Proof. One may consider $F\left(I_{k}\right)$ as a subspace of $F(A)$ by extending any $b_{k} \in F\left(I_{k}\right)$ by zero in a natural way. Hence, $F(A) \supseteq \bigoplus_{k=1}^{m} F\left(I_{k}\right)$ which proves (i). In order to prove (ii), we assume that I_{l} is perfect. Then for any $\varphi \in F(A)$ and $l^{\prime} \neq l$, we have

$$
\varphi\left(I_{l}, I_{l^{\prime}}\right)=\varphi\left(\left[I_{l}, \ldots, I_{l}\right], I_{l^{\prime}}\right)=\varphi\left(I_{l},\left[I_{l}, \ldots, I_{l}, I_{l^{\prime}}\right]\right)=0
$$

Moreover, since $\left.\varphi\right|_{I_{k} \times I_{k}} \in F\left(I_{k}\right)$ for any $k, 1 \leqslant k \leqslant m$, it follows that $\varphi=\left.\sum_{k=1}^{m} \varphi\right|_{I_{k} \times I_{k}}$, and hence $F(A)=\bigoplus_{k=1}^{m} F\left(I_{k}\right)$, which completes the proof.

Lemma 3.3. Let A be an n-Lie algebra over \mathbb{R}, then

$$
\operatorname{dim}_{\mathbb{R}} F(A) \leqslant \operatorname{dim}_{\mathbb{C}} F\left(A^{\mathbb{C}}\right)
$$

Proof. Suppose that $\left\{\varphi_{i} \mid 1 \leqslant i \leqslant l\right\}$ are linearly independent elements in $F(A)$. Extend each form φ_{i} to $A^{\mathbb{C}}$ by

$$
\overline{\varphi_{i}}\left(x_{1} \otimes z_{1}, x_{2} \otimes z_{2}\right)=z_{1} z_{2} \varphi_{i}\left(x_{1}, x_{2}\right), \quad x_{i} \in A, \quad z_{i} \in \mathbb{C}
$$

It is easy to see that each $\bar{\varphi}_{i} \in F\left(A^{\mathbb{C}}\right)$. We now prove that $\left\{\bar{\varphi}_{i} \mid 1 \leqslant i \leqslant l\right\}$ are linearly independent over \mathbb{C}. Assume that there exist $\lambda_{i} \in \mathbb{C}, 1 \leqslant i \leqslant l$, such that $\sum_{i=1}^{l} \lambda_{i} \bar{\varphi}_{i}\left(x_{1} \otimes z_{1}, x_{2} \otimes z_{2}\right)=0$ for any $x_{i} \in A$ and $z_{i} \in \mathbb{C}$. In particular, $\sum_{i=1}^{l} \lambda_{i} \bar{\varphi}_{i}\left(x_{1} \otimes 1, x_{2} \otimes 1\right)=\sum_{i=1}^{l} \lambda_{i} \varphi_{i}\left(x_{1}, x_{2}\right)=0$. Suppose that $\lambda_{i}=a_{i}+\sqrt{-1} b_{i}, a_{i}, b_{i} \in \mathbb{R}$, then $\sum_{i=1}^{l} a_{i} \varphi_{i}\left(x_{1}, x_{2}\right)=\sum_{i=1}^{l} b_{i} \varphi_{i}\left(x_{1}, x_{2}\right)=0$. Hence, $a_{i}=b_{i}=0$, i.e. $\lambda_{i}=0$, which implies that $\operatorname{dim}_{\mathbb{R}} F(A) \leqslant \operatorname{dim}_{\mathbb{C}} F\left(A^{\mathbb{C}}\right)$.

We now investigate the metric structures of all real simple n-Lie algebras ($n \geqslant 3$).
First we consider the real simple n-Lie algebras of type I. Let $\left\{e_{1}, \ldots, e_{n+1}\right\}$ be a basis of the vector space \mathbb{R}^{n+1} and $b_{s}, 0 \leqslant s \leqslant\left[\frac{n+1}{2}\right]$, be a nondegenerate symmetric bilinear form on \mathbb{R}^{n+1} whose associated matrix relative to this basis is $\operatorname{diag}(-1, \ldots,-1,1, \ldots, 1)$ with s negatives, and f be a nonzero determinant form satisfying $f\left(e_{1}, \ldots, e_{n+1}\right)=1$. For $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n+1}$ let $\left[v_{1}, \ldots, v_{n}\right]_{s}$ be the unique element in \mathbb{R}^{n+1} such that for all $x \in \mathbb{R}^{n+1}$ the identity

$$
\begin{equation*}
b_{s}\left(\left[v_{1}, \ldots, v_{n}\right]_{s}, x\right)=f\left(v_{1}, \ldots, v_{n}, x\right) \tag{3.1}
\end{equation*}
$$

holds. Then with the bracket $\left[v_{1}, \ldots, v_{n}\right]_{s}, \mathbb{R}^{n+1}$ becomes an n-Lie algebra, which will be denoted by A_{n+1}^{s}. According to [11], $A_{n+1}^{s} \cong A_{n+1}^{s^{\prime}}$ if and only if $s=s^{\prime}, 0 \leqslant s \leqslant\left[\frac{n+1}{2}\right]$, and $\left\{A_{n+1}^{s} \mid 0 \leqslant s ; s^{\prime} \leqslant\left[\frac{n+1}{2}\right]\right\}$ exhaust all real simple n-Lie algebras of type I.

Let $\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]_{s}=\sum_{k=1}^{n+1} a_{k} e_{k}, a_{k} \in \mathbb{R}$, then

$$
b_{s}\left(\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]_{s}, e_{j}\right)= \begin{cases}-a_{j}, & j \leqslant s \\ a_{j}, & j>s\end{cases}
$$

Note that

$$
f\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}, e_{j}\right)= \begin{cases}0, & i \neq j \\ (-1)^{n+1-j}, & i=j\end{cases}
$$

Then by (3.1), we have

$$
\left[e_{1}, \ldots, \hat{e_{i}}, \ldots, e_{n+1}\right]_{s}= \begin{cases}(-1)^{n-i} e_{i}, & i \leqslant s \tag{3.2}\\ (-1)^{n+1-i} e_{i}, & i>s\end{cases}
$$

Identity (3.2) is the bracket table of real simple n-Lie algebra A_{n+1}^{s}.
Theorem 3.4. Let A_{n+1}^{s}, b_{s} as above. Then
(i) $\varphi \in F\left(A_{n+1}^{s}\right)$ if and only if $\varphi=\alpha b_{s}$ for some $\alpha \in \mathbb{R}$,
(ii) $\operatorname{dim} F\left(A_{n+1}^{s}\right)=\operatorname{dim} B\left(A_{n+1}^{s}\right)=1$.

Proof. Since f is a determinant form, it follows that every symmetric bilinear form b_{s} is invariant. Indeed, according to (3.1), we have for any $v_{1}, \ldots, v_{n}, x \in \mathbb{R}^{n+1}$,

$$
\begin{aligned}
b_{s}\left(\left[v_{1}, \ldots, v_{n}\right], x\right) & =f\left(v_{1}, \ldots, v_{n}, x\right)=-f\left(v_{1}, \ldots, v_{n-1}, x, v_{n}\right) \\
& =-b_{s}\left(\left[v_{1}, \ldots, v_{n-1}, x\right], v_{n}\right)=-b_{s}\left(v_{n},\left[v_{1}, \ldots, v_{n-1}, x\right]\right)
\end{aligned}
$$

Thus, $\alpha b_{s} \in F\left(A_{n+1}^{s}\right)$ for any $\alpha \in \mathbb{R}$. Conversely, suppose $\varphi \in F\left(A_{n+1}^{s}\right)$. Using (3.2) one has the following:

$$
\begin{aligned}
& \text { if } \quad i \neq j, \quad \varphi\left(e_{i}, e_{j}\right)= \pm \varphi\left(\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]_{s}, e_{j}\right) \\
& = \pm \varphi\left(e_{n+1},\left[e_{1}, \ldots, e_{j}, \ldots, e_{j}\right]_{s}\right)=0, \\
& \text { if } i \leqslant s, \quad \varphi\left(e_{i}, e_{i}\right)=(-1)^{n-i} \varphi\left(\left[e_{1}, \ldots, \hat{e_{i}}, \ldots, e_{n+1}\right]_{s}, e_{i}\right) \\
& =(-1)^{n-i+1} \varphi\left(e_{n+1},\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}, e_{i}\right]_{s}\right) \\
& =-\varphi\left(e_{n+1},\left[e_{1}, \ldots, e_{n}\right]_{s}\right)=-\varphi\left(e_{n+1}, e_{n+1}\right), \\
& \text { if } i>s, \quad \varphi\left(e_{i}, e_{i}\right)=(-1)^{n+1-i} \varphi\left(\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]_{s}, e_{i}\right) \\
& =(-1)^{n-i} \varphi\left(e_{n+1},\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}, e_{i}\right]_{s}\right) \\
& =\varphi\left(e_{n+1},\left[e_{1}, \ldots, e_{n}\right]_{s}\right)=\varphi\left(e_{n+1}, e_{n+1}\right) .
\end{aligned}
$$

Thus, we have

$$
\varphi\left(e_{i}, e_{j}\right)= \begin{cases}0, & i \neq j \\ -\varphi\left(e_{n+1}, e_{n+1}\right), & i=j \leqslant s \\ \varphi\left(e_{n+1}, e_{n+1}\right), & i=j>s\end{cases}
$$

Since

$$
b_{s}\left(e_{i}, e_{j}\right)= \begin{cases}0, & i \neq j \\ -1, & i=j \leqslant s \\ 1, & i=j>s\end{cases}
$$

It follows that $\varphi=\alpha b_{s}$ for some $\alpha \in \mathbb{R}$, which proves assertion (i). Assertion (ii) follows at once from lemma 3.1 and assertion (i).

Remark 3.1. Here our 3-Lie algebra A_{4}^{0} is denoted by A_{4} in some articles (e.g. [6]).

Next we study the real simple n-Lie algebras of type II. For simplicity, we only consider the case $n=3$.

Let A_{0} be the unique complex simple 3-Lie algebra with bracket table

$$
\begin{equation*}
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{4}\right]=(-1)^{i} e_{i}, \quad i=1,2,3,4 \tag{3.3}
\end{equation*}
$$

Then the realification, denoted by A_{8}, of A_{0} is a real simple 3-Lie algebra of dimension 8, and $\left\{e_{i}, e_{4+i}:=\sqrt{-1} e_{i} \mid 1 \leqslant i \leqslant 4\right\}$ is a basis of A_{8}. From (3.3), we can write out the bracket table of A_{8} as follows:

$$
\begin{align*}
& {\left[e_{1}, \ldots, \hat{e_{i}}, \ldots, e_{4}\right]=(-1)^{i} e_{i},} \\
& {\left[e_{4+1}, \ldots, e_{4+i}, \ldots, e_{4+4}\right]=(-1)^{i+1} e_{4+i}, \quad 1 \leqslant i \leqslant 4,} \\
& {\left[e_{i}, e_{j}, e_{4+k}\right]=\sqrt{-1}\left[e_{i}, e_{j}, e_{k}\right], \quad 1 \leqslant i<j, \quad k \leqslant 4,} \tag{3.4}\\
& {\left[e_{i}, e_{4+j}, e_{4+k}\right]=-\left[e_{i}, e_{j}, e_{k}\right], \quad 1 \leqslant i, j<k \leqslant 4 .}
\end{align*}
$$

Note that A_{8} is the unique real simple 3-Lie algebra of type II. Using identity (3.4), one can easily verify that if φ is an invariant symmetric bilinear form on A_{8} then φ satisfies that

$$
\varphi\left(e_{i}, e_{j}\right)=0,1 \leqslant i, \quad j \leqslant 8
$$

except for

$$
\varphi\left(e_{1}, e_{1}\right)=\cdots=\varphi\left(e_{4}, e_{4}\right)=-\varphi\left(e_{5}, e_{5}\right)=\cdots=-\varphi\left(e_{8}, e_{8}\right)
$$

and

$$
\varphi\left(e_{1}, e_{5}\right)=\varphi\left(e_{2}, e_{6}\right)=\varphi\left(e_{3}, e_{7}\right)=\varphi\left(e_{4}, e_{8}\right)
$$

Define two bilinear forms φ_{1} and φ_{2} on A_{8} given by

$$
\begin{array}{lcc}
\varphi_{1}\left(e_{i}, e_{j}\right)=0,1 \leqslant i \neq j \leqslant 8, & \varphi_{1}\left(e_{i}, e_{i}\right)=-\varphi\left(e_{4+i}, e_{4+i}\right)=1, & 1 \leqslant i \leqslant 4 \\
\varphi_{2}\left(e_{i}, e_{j}\right)=0,1 \leqslant i, j \leqslant 8, & \text { except for } \quad \varphi_{2}\left(e_{i}, e_{4+i}\right)=1, & 1 \leqslant i \leqslant 4
\end{array}
$$

Clearly, φ_{1} and φ_{2} are linearly independent metrics on A_{8}.

Theorem 3.5.

(i) $\operatorname{dim} F\left(A_{8}\right)=\operatorname{dim} B\left(A_{8}\right)=2$.
(ii) Any metric on A_{8} has the signature $(4,4)$.

Proof.

(i) By proposition 2.4, $A_{8}^{\mathbb{C}}$, the complexification of A_{8}, is semisimple, so $A_{8}^{\mathbb{C}}=A_{0} \oplus A_{0}$, where A_{0} is the unique complex simple 3-Lie algebra of dimension 4. Using lemmas 3.2 and 3.3, one has $\operatorname{dim}_{\mathbb{R}} F\left(A_{8}\right) \leqslant \operatorname{dim}_{\mathbb{C}} F\left(A_{8}^{\mathbb{C}}\right)=2 \operatorname{dim}_{\mathbb{C}} F\left(A_{0}\right)$. Since A_{0} is simple, similar argument shows that $\operatorname{dim}_{\mathbb{C}} F\left(A_{0}\right)=\operatorname{dim}_{\mathbb{C}} B\left(A_{0}\right)=1$. On the other hand, since φ_{1} and φ_{2} are linearly independent, $\operatorname{dim}_{\mathbb{R}} F\left(A_{8}\right) \geqslant 2$. Therefore, $\operatorname{dim} F\left(A_{8}\right)=\operatorname{dim} B\left(A_{8}\right)=2$, by lemma 3.1.
(ii) Let $\varphi=k_{1} \varphi_{1}+k_{2} \varphi_{2}$ be an arbitrary metric on A_{8}, where φ_{i} are given as above and $k_{i} \in \mathbb{R}, i=1,2$. According to the knowledge of symmetric forms in linear algebra, we can prove by a direct calculation that the associated matrix of φ relative to $\left\{e_{1}, \ldots, e_{8}\right\}$ is congruent to $\operatorname{diag}(1,1,1,1,-1,-1,-1,-1)$. In other words, relative to another basis of A_{8}, the associated matrix of φ is $\operatorname{diag}(1,1,1,1,-1,-1,-1,-1)$.

Remark 3.2. Theorem 3.5 is true for any $n \geqslant 3$.
To conclude this section, we observe the metric structure on a real reductive n-Lie algebra. Assume that A is a real reductive n-Lie algebra, i.e. $A=S \oplus Z(A)$, where S is a semisimple ideal and $Z(A)$ is the center of A. Suppose that S is a direct sum of l_{1} simple ideals of type I and l_{2} simple ideals of type II, and $\operatorname{dim} Z(A)=r$.

Theorem 3.6. Let A be a real reductive n-Lie algebra as above. Then A admits a metric and $\operatorname{dim} B(A)=l_{1}+2 l_{2}+\frac{r(r+1)}{2}$.

Proof. We first find a metric on A. Let $Z(A)=\left\langle e_{1}, \ldots, e_{r}\right\rangle$. Define a bilinear form φ on $Z(A)$ given by $\varphi\left(e_{i}, e_{j}\right)=\delta_{i j}, 1 \leqslant i, j \leqslant r$. φ is clearly a metric on $Z(A)$. Note that S is a direct sum of $l_{1}+l_{2}$ simple ideals and each of them admits a metric, say φ_{i}. Then we may construct a metric on A from $\varphi_{1}, \ldots, \varphi_{l_{1}+l_{2}}$ and φ in a natural way. Hence, $F(A)=B(A)$ by lemma 3.1. By lemma 3.2, one has $\operatorname{dim} F(A)=\operatorname{dim} F(S)+\operatorname{dim} F(Z(A))$. Moreover by theorems 3.4 and $3.5, \operatorname{dim} F(S)=\operatorname{dim} B(S)=l_{1}+2 l_{2}$. On the other hand, $\operatorname{dim} F(Z(A))=\frac{r(r+1)}{2}$ since the $\frac{r(r+1)}{2}$ symmetric bilinear forms $\varphi_{i j}$ on $Z(A)$ defined to be zero except for $\varphi_{i j}\left(e_{i}, e_{j}\right)=1,1 \leqslant i, j \leqslant r$, are invariant and form a basis of $F(Z(A))$. Therefore, $\operatorname{dim} F(A)=\operatorname{dim} B(A)=l_{1}+2 l_{2}+\frac{r(r+1)}{2}$.

4. An example of 3-Lie algebras

We have proved that any real simple n-Lie algebra has metric dimension 1 or 2 . Now we present an example of real 3-Lie algebras which is indecomposable but has much larger metric dimension. This example is inspired by a result in [13].

We begin with recalling some facts on 3-Lie algebras. Let A be an arbitrary 3-Lie algebra over \mathbb{C} or \mathbb{R}. If $\operatorname{dim} A<3$, then A is Abelian. If $\operatorname{dim} A=3$, then either A is Abelian, or A has a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that $\left[e_{1}, e_{2}, e_{3}\right]=e_{1}$ which shows that A is not nilpotent. Moreover, according to the multiplication table of n-Lie algebras of dimension $n+1$ (see [12]), there is a unique nilpotent and non-Abelian 3-Lie algebra of dimension 4 whose bracket is given, relative to a basis $\left\{e_{1}, \ldots, e_{4}\right\}$, by $\left[e_{2}, e_{3}, e_{4}\right]=e_{1}$, which shows that A is nilpotent and non-Abelian. Summarizing above argument we obtain the following:

Lemma 4.1 (cf [12]). Let A be a nilpotent 3-Lie algebra over \mathbb{C} or \mathbb{R}. If $\operatorname{dim} A \leqslant 3$, A is Abelian. If $\operatorname{dim} A=4, A$ is non-Abelian and the center $Z(A)$ is of dimension 1 .

From now on, let A denote a real simple 3-Lie algebra of type I, i.e. $A=A_{4}^{s}, s=0,1,2$. Consider the vector space $N(A, 2):=A T_{1} \oplus A T_{2}$, where $A T_{i}, i=1,2$, is a copy of A. Define the bracket on $N(A, 2)$ by

$$
\left[x T_{i}, y T_{j}, z T_{k}\right]= \begin{cases}{[x, y, z] T_{i+j+k-1},} & i+j+k-1 \leqslant 2 \\ 0, & \text { otherwise }\end{cases}
$$

Clearly, $N(A, 2)$ is a real 3-Lie algebra of dimension 8.
Lemma 4.2. Let $N=N(A, 2)$ be as above.
(i) N is nilpotent. More precisely, $N^{1}=Z(N)=A T_{2}, N^{2}=0$.
(ii) N admits a metric.

Proof. Assertion (i) is obvious. In order to prove (ii), we assume that b is a metric on A, and define a bilinear form on N by $\bar{b}\left(x T_{i}, y T_{j}\right)=b(x, y) \delta_{3}^{i+j}, x, y \in A$, where δ_{s}^{t} is the Kronecker symbol. Clearly, \bar{b} is symmetric since b is so. To prove that \bar{b} is nondegenerate,
we take a nonzero vector $X=x_{1} T_{1}+x_{2} T_{2} \in N$. Without loss of generality we may assume that $x_{1} \neq 0$. Since b is nondegenerate, there exists $y \in A$ such that $b\left(x_{1}, y\right) \neq 0$. Hence, $\bar{b}\left(X, y T_{2}\right)=b\left(x_{1}, y\right) \neq 0$. Now we prove that \bar{b} is invariant. Let $x, y, u, v \in$ A, then $\bar{b}\left(\left[x T_{i}, y T_{j}, u T_{k}\right], v T_{l}\right)=\bar{b}\left([x, y, u] T_{i+j+k-1}, v T_{l}\right)=b([x, y, u], v) \delta_{3}^{i+j+k+l-1}=$ $-b\left(u,[x, y, v] \delta_{3}^{i+j+k+l-1}\right)=-\bar{b}\left(u T_{k},\left[x T_{i}, y T_{j}, v T_{l}\right]\right), i, j, k, l=1,2$, which completes the proof.

Theorem 4.3. $N=N(A, 2)$ as above.
(i) N is indecomposable.
(ii) $\operatorname{dim} B(N) \geqslant 5$.

Proof.

(i) Suppose that $N=I \oplus J$, where I and J are non-zero ideals of N. If one of them, say I, has dimension greater than 4 , then $\operatorname{dim} J \leqslant 3$.

Lemma 4.2 shows that J is nilpotent, so J must be Abelian by lemma 4.1. Thus, one has that $[J, N, N] \subseteq[J, J, J]=0$, which shows that $J \subseteq Z(N)$, the center of N. Thus, by lemma 4.2, one has that

$$
J \subseteq Z(N)=N^{1}=[N, N, N]=[I, I, I] \subseteq I
$$

which is impossible since $I \cap J=\{0\}$. On the other hand, if $\operatorname{dim} I=\operatorname{dim} J=4$, then again by lemma 4.1, I and J are all non-Abelian and $\operatorname{dim} Z(I)=\operatorname{dim} Z(J)=1$. But by lemma 4.2, $\operatorname{dim} Z(N)=4$, which leads to a contradiction for $Z(N)=N(I) \oplus N(J)$. This shows that N must be indecomposable.
(ii) In order to prove that $\operatorname{dim} B(N) \geqslant 5$, it suffices to prove that $\operatorname{dim} F(N) \geqslant 5$ according to lemmas 4.2 and 3.1. Let $\left\{e_{1}, \ldots, e_{4}\right\}$ be a basis of A, then $\left\{x_{i}=e_{i} T_{1}, x_{4+i}=e_{i} T_{2} \mid 1 \leqslant\right.$ $i \leqslant 4\}$ is a basis of N such that $\left\{x_{5}, \ldots, x_{8}\right\}$ provides a basis of $Z(N)$. Let \bar{b} be the metric on N given by lemma 4.2. For each $j=1,2,3,4$ define a bilinear form φ_{j} on N by

$$
\varphi_{j}\left(\sum_{i=1}^{8} a_{i} x_{i} \sum_{i=1}^{8} b_{i} x_{i}\right)=a_{j} b_{j}, \quad a_{i}, b_{i} \in \mathbb{R} .
$$

It is easy to prove that φ_{j} is invariant and symmetric. We now prove that the bilinear forms \bar{b} and $\varphi_{j}, j=1,2,3,4$, are linearly independent. Take $k_{j} \in \mathbb{R}, j=0,1,2,3,4$, such that $k_{0} \bar{b}+\sum_{j=1}^{4} k_{j} \varphi_{j}=0$. Since b is nondegenerate on A, there are $u, v \in A$, such that $b(u, v) \neq 0$. Thus,

$$
\left(k_{0} \bar{b}+\sum_{j=1}^{4} k_{j} \varphi_{j}\right)\left(u T_{1}, v T_{2}\right)=k_{0} \bar{b}\left(u T_{1}, v T_{2}\right)=k_{0} b(u, v),
$$

which forces that $k_{0}=0$. Similarly, for $i=1,2,3,4$,

$$
\left(k_{0} \bar{b}+\sum_{j=1}^{4} k_{j} \varphi_{j}\right)\left(x_{i}, x_{i}\right)=k_{i} \varphi_{i}\left(x_{i}, x_{i}\right)=k_{i}=0
$$

Hence, \bar{b} and $\varphi_{j}, 1 \leqslant j \leqslant 4$, are linearly independent and $\operatorname{dim} F(N) \geqslant 5$.

Acknowledgments

The authors are very grateful to the referees for their patient and constructive comments, which improved the appearance and readability of this paper.

References

[1] Bagger J and Lambert N 2008 Gauge symmetry and supersymmetry of multiple M2-branes Phys. Rev. D 77065008
[2] Bagger J and Lambert N 2008 Comments on multiple M2-branes J. High Energy Phys. JHEP0802(2008)105
[3] Gustavsson A 2007 Algebraic structure on parallel M2-branes arXiv:0709.1260
[4] Papadopouls G 2008 M2-branes, 3-Lie algebras and Plucker relations arXiv:0804.2662
[5] Gauntlett J P and Gutowski J B 2008 Constraining maximally supersymmetric membrane actions arXiv:0804.3078
[6] Ho P M, Hou R C and Matsuo Y 2008 Lie 3-algebra and multiple M2-branes arXiv:0804.2110
[7] de Medeiros P, Figueroa-o'Farrill J and Me'ndez-Escorbar E 2008 Lorentzian Lie 3-algebras and their BaggerLambert moduli: space arXiv:0805.4363
[8] de Medeiros P, Figueroa-o'Farrill J and Me'ndez-Escorbar E 2008 Metric Lie 3-algebras in Bagger-Lambert theory arXiv:0806.3242
[9] de Medeiros P, Figueroa-o'Farrill J and Me'ndez-Escorbar E 2009 Metric 3-Lie algebras for unitary BaggerLambert theory arXiv:0902.4674
[10] Figueroa-o'Farrill J 2008 Lorentzian Lie n-algebras arXiv:0805.4760
[11] Ling W X 1993 On structure of n-Lie algebras PhD Thesis Siegen
[12] Filippov V 1985 n-Lie algebras, Sibirik Math. Zh. 26 126-40
[13] Bajo I and Benayadi S 1997 Lie algebras admitting a unique quadratic structure Commun. Algebr. 25 2795-805

[^0]: * Project supported by NSF(A2007000138) of Hebei province.
 ${ }^{3}$ Author to whom any correspondence should be addressed.

