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Abstract
We give the multiplication structures of all real simple n-Lie algebras and prove
that each of them has metric dimension 1 or 2 depending on that it belongs to
type I or type II. We also determine the signatures of metrics on all real simple
n-Lie algebras. Moreover, we present an example of real 3-Lie algebras which
is indecomposable but has much larger metric dimension.

PACS numbers: 02.20.Sv, 02.10.Xm
Mathematics Subject Classification: 17B20, 17B81

1. Introduction

Recently, it has been shown that the structure of metric the 3-Lie algebras is closely linked
to the supersymmetry and gauge symmetry transformations of the worldvolume theory of
multiple coincident M2-branes (see [1–3]). The Bagger–Lambert theory has a novel local
gauge symmetry which is not based on a Lie algebra, but rather on a 3-Lie algebra. It was
found that the Jacobi identity for a 3-Lie algebra is essential to define the action with N = 8
supersymmetry, and the Jacobi identity can also be thought of as a generalized Plucker relation
in the physics literature. To obtain the correct equations of motion for the Bagger–Lambert
theory from a Lagrangian that is invariant under all aforementioned symmetries seems to
require the 3-Lie algebra to admit an invariant inner product (i.e. a metric). The signature of
this metric determines the relative signs of the kinetic terms for scalar and fermion fields in the
Bagger–Lambert Lagrangian (see [1–3]). In ordinary gauge theory, a positive-definite metric
is required in order to ensure that the theory has positive-definite kinetic terms and to prevent
violations of unitarity due to propagating ghost-like degrees of freedom. However, there are
very few 3-Lie algebras which admit positive-definite metrics. In fact, it has been shown (see
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[4, 5]) that all finite-dimensional 3-Lie algebras with positive-definite metrics are the direct
sums of A0

4 (see section 3) with trivial algebras. On the other hand, in order to find new
interacting Bagger–Lambert Lagrangians and despite the possibility of negative-norm states,
one is led to contemplate 3-Lie algebras with metrics having any signatures (p, q), such as
p = 1 (Lorentzian), p = 2 or with a degenerate invariant symmetric bilinear forms, since in
certain dynamical systems a zero-norm generator corresponds to a gauge symmetry while a
negative-norm generator corresponds to a ghost (see [6–10]). Thus, it seems to be worthwhile
and interesting, in both physical and mathematical observations, to investigate n-Lie algebras
(any n � 3) with invariant symmetric (nondegenerate or not) bilinear forms.

This paper is organized as follows. In section 2, we recall some notations and facts on
n-Lie algebras. In particular, we summarize the classification of real simple n-Lie algebras.
In section 3 we give the concrete bracket structures of all real simple n-Lie algebras of type
I and the real simple 3-Lie algebra of type II, and prove that the metric dimension of a real
simple n-Lie algebra is equal to 1 or 2 depending on that it is of type I or II. In section 4
we construct an example of real 3-Lie algebras which is indecomposable but has much larger
metric dimension.

Throughout this paper, K will denote the number field R or C and all n-Lie algebras will
be finite dimensional over K.

2. Some results on n-Lie algebras

We recall in this section some notations and results on n-Lie algebras which can be found in
[11] and [12].

Let A be a vector space over K. An n-Lie algebra structure on A consists of a linear map
[, . . . , ]: ∧nA → A such that the generalized Jacobi identity

[x1, . . . , xn−1, [y1, . . . , yn]] =
n∑

i=1

[y1, . . . , [x1, . . . , xn−1, yi], . . . , yn]

holds, for all xk, yk ∈ A.

A subspace I of an n-Lie algebra A is called an ideal of A if [I, A, . . . , A] ⊆ I. Clearly, the
center Z(A) = {x ∈ A | [x,A, . . . , A] = 0} is an ideal of A. Call A solvable if A(k) = 0 for
some k, where A(1) = [A, . . . , A], and A(l+1) = [A(l), . . . , A(l)]. Call A nilpotent if Ak = 0 for
some k, where A1 = [A, . . . , A], and Al+1 = [Al,A, . . . , A]. The unique maximal solvable
ideal of A is called the radical of A and denoted by RadA. If RadA = 0, A is called semisimple.
If A has no ideals except itself and 0, and if moreover A1 = [A, . . . , A] �= 0, A is called
simple. A is called Abelian, if A1 = [A, . . . , A] = 0, A is called perfect if A1 = A.

Proposition 2.1 ([12]). There is, up to isomorphism, a unique simple n-Lie algebra over C,
for every n > 2. This algebra is of dimension (n + 1) and its bracket is given relative to a
basis {e1, . . . , en+1} by

[e1, . . . , êi , . . . , en+1] = (−1)n+1+iei , i = 1, 2, . . . , n + 1, (2.1)

where the symbol êi means that ei is omitted.

Remark 2.1. In the following, we denote by A0 the unique complex simple n-Lie algebra
given by (2.1).

Remark 2.2. In the following, any brackets not listed in a multiplication table of an n-Lie
algebra are assumed to be equal to zero.
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Proposition 2.2 ([11, 12]). An n-Lie algebra Ã over C or R is semisimple if and only if Ã is
a direct sum of simple ideals.

In order to classify the finite-dimensional real simple n-Lie algebras, we will recall the
definitions of complexification of a real n-Lie algebra, and of the realification of a complex
n-Lie algebra.

Let Ã be an arbitrary real n-Lie algebra. We set up the tensor product ÃC := Ã ⊗ C and
regard it as a vector space over C by z1(x ⊗ z2) := x ⊗ z1z2, for x ∈ Ã, and z1, z2 ∈ C.
Obviously, ÃC is an n-Lie algebra with bracket

[x1 ⊗ z1, . . . , xn ⊗ zn] := [x1, . . . , xn] ⊗ z1 · · · zn.

This complex n-Lie algebra is called the complexification of Ã. Clearly, dimRÃ = dimCÃC.

Conversely, given a complex n-Lie algebra Ã, then by restricting the ground field C to R,
we obtain a real n-Lie algebra, which will be called the realification of Ã and denoted by ÃR.
Clearly, if {e1, . . . , em} is a basis of Ã, then {e1, . . . , em,

√−1e1, . . . ,
√−1em} is a basis of

ÃR, so dimRÃR = 2dimCÃ.
A real n-Lie algebra Ã is called a real form of a complex n-Lie algebra Ã if ÃC is

isomorphic to Ã.

Proposition 2.3 ([11]). Let Ã be an arbitrary complex simple n-Lie algebra. Then the
realification Ã of ÃR is simple.

Proposition 2.4 ([11]). A real simple n-Lie algebra is either isomorphic to the realification
of a complex simple n-Lie algebra, or isomorphic to a real form of a complex simple n-Lie
algebra.

According to proposition 2.4, in order to find all real simple n-Lie algebras (n � 3), it
suffices to calculate the real forms and the realifications of all complex simple n-Lie algebras.
However, as proposition 2.1 shows, there is up to isomorphism only one finite-dimensional
complex simple n-Lie algebra A0 of dimension (n+1) given by remark 2.1. Therefore, by
proposition 2.3, as one simple real n-Lie algebra we have the realification of A0 and it is of
dimension 2(n+1) over R. On the other hand, it has been shown that (see [11, 12]) A0 has
up to isomorphism

[
n+1

2

]
+ 1 real forms and every real form is determined by a bracket table

given by (3.2) below. In summary, we have arrived at the following classification theorem of
real simple n-Lie algebras.

Theorem 2.5. All real simple n-Lie algebras are divided into two types:

type I:
[

n+1
2

]
+ 1 n-Lie algebras of dimension n + 1,

type II: one n-Lie algebra of dimension 2(n + 1).

3. Real simple n-Lie algebras

Let A be an arbitrary n-Lie algebra over K. A bilinear form b on A is said to be invariant
if b([x1, . . . , xn−1, x], y) = −b(x, [x1, . . . , xn−1, y]) for all xi, x, y ∈ A. A nondegenerate
symmetric invariant bilinear form b on A is called a metric (or an inner product) and (A, b) is
said to be a metric n-Lie algebra.

Let us denote by F(A) the vector space of all symmetric invariant bilinear forms on A and
let B(A) be the subspace of F(A) spanned by all metrics. We will call dimB(A) the metric
dimension of A and we will say that A admits a unique (up to a constant) metric structure if
dimB(A) = 1.
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Lemma 3.1 (cf [13]). If A is an n-Lie algebra over K admitting a metric, then B(A) = F(A).

Proof. Let b a metric on A and ϕ ∈ F(A). Denote by M(b) and M(ϕ) the matrices
associated with b and ϕ relative to a basis of A, respectively. Observe that the determinant
det(M(ϕ) − λM(b)) is a polynomial in λ. We may find λ0 ∈ K, λ0 �= 0, such that
det(M(ϕ)−λM(b)) �= 0. This shows that ϕ−λ0b is nondegenerate and ϕ = (ϕ−λ0b)+λ0b ∈
B(A). �

Lemma 3.2. Let A be an n-Lie algebra over K and let A = I1 ⊕ · · · ⊕ Im, where each Ik is
an ideal of A.

(i) dimF(A) �
∑m

k=1 dimF(Ik).
(ii) If, in addition, there are at least (m − 1) ideals among I1, . . . , Im which are perfect, then

dimF(A) = ∑m
k=1 dimF(Ik).

Proof. One may consider F(Ik) as a subspace of F(A) by extending any bk ∈ F(Ik) by zero
in a natural way. Hence, F(A) ⊇ ⊕m

k=1 F(Ik) which proves (i). In order to prove (ii), we
assume that Il is perfect. Then for any ϕ ∈ F(A) and l′ �= l, we have

ϕ(Il, Il′) = ϕ([Il, . . . , Il], Il′) = ϕ(Il, [Il, . . . , Il, Il′ ]) = 0.

Moreover, since ϕ |Ik×Ik
∈ F(Ik) for any k, 1 � k � m, it follows that ϕ = ∑m

k=1 ϕ |Ik×Ik
, and

hence F(A) = ⊕m
k=1 F(Ik), which completes the proof. �

Lemma 3.3. Let A be an n-Lie algebra over R, then

dimRF(A) � dimCF(AC).

Proof. Suppose that {ϕi | 1 � i � l} are linearly independent elements in F(A). Extend
each form ϕi to AC by

ϕ̄i(x1 ⊗ z1, x2 ⊗ z2) = z1z2ϕi(x1, x2), xi ∈ A, zi ∈ C.

It is easy to see that each ϕ̄i ∈ F(AC). We now prove that {ϕ̄i | 1 � i � l}
are linearly independent over C. Assume that there exist λi ∈ C, 1 � i � l, such
that

∑l
i=1 λiϕ̄i(x1 ⊗ z1, x2 ⊗ z2) = 0 for any xi ∈ A and zi ∈ C. In particular,∑l

i=1 λiϕ̄i(x1⊗1, x2⊗1) = ∑l
i=1 λiϕi(x1, x2) = 0. Suppose that λi = ai+

√−1bi, ai, bi ∈ R,
then

∑l
i=1 aiϕi(x1, x2) = ∑l

i=1 biϕi(x1, x2) = 0. Hence, ai = bi = 0, i.e. λi = 0, which
implies that dimRF(A) � dimCF(AC). �

We now investigate the metric structures of all real simple n-Lie algebras (n � 3).
First we consider the real simple n-Lie algebras of type I. Let {e1, . . . , en+1} be a basis

of the vector space R
n+1 and bs, 0 � s �

[
n+1

2

]
, be a nondegenerate symmetric bilinear

form on R
n+1 whose associated matrix relative to this basis is diag(−1, . . . ,−1, 1, . . . , 1)

with s negatives, and f be a nonzero determinant form satisfying f (e1, . . . , en+1) = 1. For
v1, . . . , vn ∈ R

n+1 let [v1, . . . , vn]s be the unique element in R
n+1 such that for all x ∈ R

n+1

the identity

bs([v1, . . . , vn]s , x) = f (v1, . . . , vn, x) (3.1)

holds. Then with the bracket [v1, . . . , vn]s , R
n+1 becomes an n-Lie algebra, which will be

denoted by As
n+1. According to [11], As

n+1
∼= As ′

n+1 if and only if s = s ′, 0 � s �
[

n+1
2

]
, and{

As
n+1

∣∣0 � s; s ′ �
[

n+1
2

]}
exhaust all real simple n-Lie algebras of type I.

4



J. Phys. A: Math. Theor. 42 (2009) 485206 Y Jin et al

Let [e1, . . . , êi , . . . , en+1]s = ∑n+1
k=1 akek, ak ∈ R, then

bs([e1, . . . , êi , . . . , en+1]s , ej ) =
{−aj , j � s,

aj , j > s.

Note that

f (e1, . . . , êi , . . . , en+1, ej ) =
{

0, i �= j,

(−1)n+1−j , i = j.

Then by (3.1), we have

[e1, . . . , êi , . . . , en+1]s =
{
(−1)n−iei , i � s,

(−1)n+1−iei , i > s.
(3.2)

Identity (3.2) is the bracket table of real simple n-Lie algebra As
n+1.

Theorem 3.4. Let As
n+1, bs as above. Then

(i) ϕ ∈ F
(
As

n+1

)
if and only if ϕ = αbs for some α ∈ R,

(ii) dimF
(
As

n+1

) = dimB
(
As

n+1

) = 1.

Proof. Since f is a determinant form, it follows that every symmetric bilinear form bs is
invariant. Indeed, according to (3.1), we have for any v1, . . . , vn, x ∈ R

n+1,

bs([v1, . . . , vn], x) = f (v1, . . . , vn, x) = −f (v1, . . . , vn−1, x, vn)

= −bs([v1, . . . , vn−1, x], vn) = −bs(vn, [v1, . . . , vn−1, x]).

Thus, αbs ∈ F
(
As

n+1

)
for any α ∈ R. Conversely, suppose ϕ ∈ F

(
As

n+1

)
. Using (3.2)

one has the following:

if i �= j, ϕ(ei, ej ) = ±ϕ([e1, . . . , êi , . . . , en+1]s , ej )

= ±ϕ(en+1, [e1, . . . , ej , . . . , ej ]s) = 0,

if i � s, ϕ(ei, ei) = (−1)n−iϕ([e1, . . . , êi , . . . , en+1]s , ei)

= (−1)n−i+1ϕ(en+1, [e1, . . . , êi , . . . , en, ei]s)

= −ϕ(en+1, [e1, . . . , en]s) = −ϕ(en+1, en+1),

if i > s, ϕ(ei, ei) = (−1)n+1−iϕ([e1, . . . , êi , . . . , en+1]s , ei)

= (−1)n−iϕ(en+1, [e1, . . . , êi , . . . , en, ei]s)

= ϕ(en+1, [e1, . . . , en]s) = ϕ(en+1, en+1).

Thus, we have

ϕ(ei, ej ) =
⎧⎨
⎩

0, i �= j,

−ϕ(en+1, en+1), i = j � s,

ϕ(en+1, en+1), i = j > s.

Since

bs(ei, ej ) =
⎧⎨
⎩

0, i �= j,

−1, i = j � s,

1, i = j > s.

It follows that ϕ = αbs for some α ∈ R, which proves assertion (i). Assertion (ii) follows at
once from lemma 3.1 and assertion (i). �

Remark 3.1. Here our 3-Lie algebra A0
4 is denoted by A4 in some articles (e.g. [6]).
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Next we study the real simple n-Lie algebras of type II. For simplicity, we only consider
the case n = 3.

Let A0 be the unique complex simple 3-Lie algebra with bracket table

[e1, . . . , êi , . . . , e4] = (−1)iei, i = 1, 2, 3, 4. (3.3)

Then the realification, denoted by A8, of A0 is a real simple 3-Lie algebra of dimension 8, and
{ei, e4+i := √−1ei | 1 � i � 4} is a basis of A8. From (3.3), we can write out the bracket
table of A8 as follows:

[e1, . . . , êi , . . . , e4] = (−1)iei,

[e4+1, . . . , ˆe4+i , . . . , e4+4] = (−1)i+1e4+i , 1 � i � 4,

[ei, ej , e4+k] = √−1[ei, ej , ek], 1 � i < j, k � 4,

[ei, e4+j , e4+k] = −[ei, ej , ek], 1 � i, j < k � 4.

(3.4)

Note that A8 is the unique real simple 3-Lie algebra of type II. Using identity (3.4), one
can easily verify that if ϕ is an invariant symmetric bilinear form on A8 then ϕ satisfies
that

ϕ(ei, ej ) = 0, 1 � i, j � 8,

except for

ϕ(e1, e1) = · · · = ϕ(e4, e4) = −ϕ(e5, e5) = · · · = −ϕ(e8, e8)

and

ϕ(e1, e5) = ϕ(e2, e6) = ϕ(e3, e7) = ϕ(e4, e8).

Define two bilinear forms ϕ1 and ϕ2 on A8 given by

ϕ1(ei, ej ) = 0, 1 � i �= j � 8, ϕ1(ei, ei) = −ϕ(e4+i , e4+i ) = 1, 1 � i � 4,

ϕ2(ei, ej ) = 0, 1 � i, j � 8, except for ϕ2(ei, e4+i ) = 1, 1 � i � 4.

Clearly, ϕ1 and ϕ2 are linearly independent metrics on A8.

Theorem 3.5.

(i) dimF(A8) = dimB(A8) = 2.
(ii) Any metric on A8 has the signature (4, 4).

Proof.

(i) By proposition 2.4, AC

8 , the complexification of A8, is semisimple, so AC

8 = A0 ⊕ A0,
where A0 is the unique complex simple 3-Lie algebra of dimension 4. Using lemmas 3.2
and 3.3, one has dimRF(A8) � dimCF(AC

8 ) = 2dimCF(A0). Since A0 is simple, similar
argument shows that dimCF(A0) = dimCB(A0) = 1. On the other hand, since ϕ1 and ϕ2

are linearly independent, dimRF(A8) � 2. Therefore, dimF(A8) = dimB(A8) = 2, by
lemma 3.1.

(ii) Let ϕ = k1ϕ1 + k2ϕ2 be an arbitrary metric on A8, where ϕi are given as above and
ki ∈ R, i = 1, 2. According to the knowledge of symmetric forms in linear algebra, we
can prove by a direct calculation that the associated matrix of ϕ relative to {e1, . . . , e8} is
congruent to diag(1, 1, 1, 1,−1,−1,−1,−1). In other words, relative to another basis
of A8, the associated matrix of ϕ is diag(1, 1, 1, 1,−1,−1,−1,−1). �

6
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Remark 3.2. Theorem 3.5 is true for any n � 3.

To conclude this section, we observe the metric structure on a real reductive n-Lie algebra.
Assume that A is a real reductive n-Lie algebra, i.e. A = S ⊕ Z(A), where S is a semisimple
ideal and Z(A) is the center of A. Suppose that S is a direct sum of l1 simple ideals of type I
and l2 simple ideals of type II, and dimZ(A) = r.

Theorem 3.6. Let A be a real reductive n-Lie algebra as above. Then A admits a metric and
dimB(A) = l1 + 2l2 + r(r+1)

2 .

Proof. We first find a metric on A. Let Z(A) = 〈e1, . . . , er〉. Define a bilinear form
ϕ on Z(A) given by ϕ(ei, ej ) = δij , 1 � i, j � r . ϕ is clearly a metric on Z(A). Note
that S is a direct sum of l1 + l2 simple ideals and each of them admits a metric, say ϕi .
Then we may construct a metric on A from ϕ1, . . . , ϕl1+l2 and ϕ in a natural way. Hence,
F(A) = B(A) by lemma 3.1. By lemma 3.2, one has dimF(A) = dimF(S) + dimF(Z(A)).

Moreover by theorems 3.4 and 3.5, dimF(S) = dimB(S) = l1 + 2l2. On the other hand,
dimF(Z(A)) = r(r+1)

2 since the r(r+1)

2 symmetric bilinear forms ϕij on Z(A) defined to be
zero except for ϕij (ei, ej ) = 1, 1 � i, j � r , are invariant and form a basis of F(Z(A)).
Therefore, dimF(A) = dimB(A) = l1 + 2l2 + r(r+1)

2 . �

4. An example of 3-Lie algebras

We have proved that any real simple n-Lie algebra has metric dimension 1 or 2. Now we
present an example of real 3-Lie algebras which is indecomposable but has much larger metric
dimension. This example is inspired by a result in [13].

We begin with recalling some facts on 3-Lie algebras. Let A be an arbitrary 3-Lie algebra
over C or R. If dimA < 3, then A is Abelian. If dimA = 3, then either A is Abelian,
or A has a basis {e1, e2, e3} such that [e1, e2, e3] = e1 which shows that A is not nilpotent.
Moreover, according to the multiplication table of n-Lie algebras of dimension n+1 (see [12]),
there is a unique nilpotent and non-Abelian 3-Lie algebra of dimension 4 whose bracket is
given, relative to a basis {e1, . . . , e4}, by [e2, e3, e4] = e1, which shows that A is nilpotent and
non-Abelian. Summarizing above argument we obtain the following:

Lemma 4.1 (cf [12]). Let A be a nilpotent 3-Lie algebra over C or R. If dimA � 3, A is
Abelian. If dimA = 4, A is non-Abelian and the center Z(A) is of dimension 1.

From now on, let A denote a real simple 3-Lie algebra of type I, i.e. A = As
4, s = 0, 1, 2.

Consider the vector space N(A, 2) := AT1 ⊕AT2, where ATi, i = 1, 2, is a copy of A. Define
the bracket on N(A, 2) by

[xTi, yTj , zTk] =
{

[x, y, z]Ti+j+k−1, i + j + k − 1 � 2,

0, otherwise.

Clearly, N(A, 2) is a real 3-Lie algebra of dimension 8.

Lemma 4.2. Let N = N(A, 2) be as above.

(i) N is nilpotent. More precisely, N1 = Z(N) = AT2, N
2 = 0.

(ii) N admits a metric.

Proof. Assertion (i) is obvious. In order to prove (ii), we assume that b is a metric on
A, and define a bilinear form on N by b̄(xTi, yTj ) = b(x, y)δ

i+j

3 , x, y ∈ A, where δt
s is the

Kronecker symbol. Clearly, b̄ is symmetric since b is so. To prove that b̄ is nondegenerate,

7
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we take a nonzero vector X = x1T1 + x2T2 ∈ N . Without loss of generality we may
assume that x1 �= 0. Since b is nondegenerate, there exists y ∈ A such that b(x1, y) �= 0.
Hence, b̄(X, yT2) = b(x1, y) �= 0. Now we prove that b̄ is invariant. Let x, y, u, v ∈
A, then b̄([xTi, yTj , uTk], vTl) = b̄([x, y, u]Ti+j+k−1, vTl) = b([x, y, u], v)δ

i+j+k+l−1
3 =

−b
(
u, [x, y, v]δi+j+k+l−1

3

) = −b̄(uTk, [xTi, yTj , vTl]), i, j, k, l = 1, 2, which completes the
proof. �

Theorem 4.3. N = N(A, 2) as above.

(i) N is indecomposable.
(ii) dimB(N) � 5.

Proof.

(i) Suppose that N = I ⊕ J , where I and J are non-zero ideals of N. If one of them, say I,
has dimension greater than 4, then dimJ � 3.

Lemma 4.2 shows that J is nilpotent, so J must be Abelian by lemma 4.1. Thus, one
has that [J,N,N] ⊆ [J, J, J ] = 0, which shows that J ⊆ Z(N), the center of N. Thus,
by lemma 4.2, one has that

J ⊆ Z(N) = N1 = [N,N,N ] = [I, I, I ] ⊆ I,

which is impossible since I ∩ J = {0}. On the other hand, if dimI = dimJ = 4, then
again by lemma 4.1, I and J are all non-Abelian and dimZ(I) = dimZ(J ) = 1. But by
lemma 4.2, dimZ(N) = 4, which leads to a contradiction for Z(N) = N(I) ⊕ N(J ).

This shows that N must be indecomposable.
(ii) In order to prove that dimB(N) � 5, it suffices to prove that dimF(N) � 5 according to

lemmas 4.2 and 3.1. Let {e1, . . . , e4} be a basis of A, then {xi = eiT1, x4+i = eiT2 | 1 �
i � 4} is a basis of N such that {x5, . . . , x8} provides a basis of Z(N). Let b̄ be the metric
on N given by lemma 4.2. For each j = 1, 2, 3, 4 define a bilinear form ϕj on N by

ϕj

(
8∑

i=1

aixi

8∑
i=1

bixi

)
= ajbj , ai, bi ∈ R.

It is easy to prove that ϕj is invariant and symmetric. We now prove that the bilinear
forms b̄ and ϕj , j = 1, 2, 3, 4, are linearly independent. Take kj ∈ R, j = 0, 1, 2, 3, 4,

such that k0b̄ +
∑4

j=1 kjϕj = 0. Since b is nondegenerate on A, there are u, v ∈ A, such
that b(u, v) �= 0. Thus,⎛

⎝k0b̄ +
4∑

j=1

kjϕj

⎞
⎠ (uT1, vT2) = k0b̄(uT1, vT2) = k0b(u, v),

which forces that k0 = 0. Similarly, for i = 1, 2, 3, 4,⎛
⎝k0b̄ +

4∑
j=1

kjϕj

⎞
⎠ (xi, xi) = kiϕi(xi, xi) = ki = 0.

Hence, b̄ and ϕj , 1 � j � 4, are linearly independent and dimF(N) � 5. �
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